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MIXING OF A CONTACT BOUNDARY RETARDED
BY STATIONARY SHOCK WAVES

V. E. Neuvazhaev and V. G. Yakovlev UDC 532.517.4

The phenomenon of turbulent mixing of the interface between two gases of different densities retarded by
plane stationary shock waves moving from the light gas into the heavy one was discovered experimentally in[1].

It is shown below that within the framework of the semiempirical models of [1-3] this phenomenon is
determined by the size of the initial perturbations — the roughness of the interface. If the characteristic size
of these perturbations approaches zero, then the width of the mixing region also approaches zero. This
phenomenon is explained by the 6-function character of the accelerstion.

If the acceleration varies smoothly, such as constantly, then mixing will always develop, even with in-
finitely small roughness. The analytical dependence of the width of the mixing region on the initial roughness
is presented. : o

The interface of the gases (liquids) is unstable against small perturbations if the acceleration is directed
from the light to the heavy gas. This instability develops for sufficiently small coefficients of viscosity and
surface tension,

In the semiempirical models of [1-3] it is assumed that turbulent mixing develops simultaneously with
the action of the acceleration, although actually the presence of viscosity and surface tension leads to the ap-
pearance of a finite time interval during which a gradual transition to turbulent motion occurs.

The known self-similar solutions {3-5] were obtained under the assumption of smallness of the initial
perturbations. Actually, these perturbations may not be small. The law according to which the emergence into
a self-similar solution with constant acceleration occurs is established below, A mild "forgetting” of the initial
irregularities of the surface was unexpectedly discovered.

1, Approximate Model

We will consider a diffusional model of turbulent mixing in the approximate formulation of [5]: The fluids
are incompressible, while the turbulent velocity v is assumed to be a function of time only, Then the process
of turbulent mixing will be described by two equations for two unknowns (the density p of the mixture and the
characteristic turbulent velocity v),

2

ar=low (1.1)
2 3
Tt T =, (1.2)
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where L is the effective width of the mixing region, equal to the distance between the points at which the
dimensionless density 6 =(p—p2)/(p1—p2) takes values of 0.1 and 0.9; p; and p, are the densities of the light and
heavy fluids, so that for the density of the mixture there is the equality p =p, +py; ¥ is a second empirical con~
stant; w? is the expression gd Inp/dx averaged over the mixing region; g is the acceleration, The concentration
of the light fluid is expressed through the density p,
N [
e bt vy (p—05)

b e (ef—el)’
and therefore it does not take part in the further discussion,
It is assumed that the characteristic turbulent length, appearing in the coefficient of diffusion, is con-
nected with the mixing region by some constant @, determined from experiment:
l=alL.
We will assume that at the initial time the interface is the point x=0, Since pf and pg, the initial densi-

ties of the heavy and light fluids, are constants while ! and v are functions of time only, Eq. (1.1) is trans-
formed by a change of variables to the equation of diffusion with a constant coefficient [5],

dplov == d'plox?, (1.3)
where d7=Ivdt. The solution of Eq. (1.3) can be represented through the probability integral, while the follow-
ing expression is valid for the width L:

L = 4ngt'/?, 1, = 0.906. 1.9
Eliminating T from (1.4), we obtain the equation
2L~ sy, (1.5)

di

2. Dependence on Initial Data with Constant Acceleration

Equations (1.2) and (1.5) with arbitrary initial data L, and v, are subject to investigation.

First, let us be confined to the case of v;=0, We convert Eq. (1.2) to the form

9

dv LY 7 2'1
‘ 7 = =g T (2.1)
where A, is some constant determined by the initial data, From (1.5) and (2.1) we get the equation
L 8nlalsl
Er a“‘Alb — ot
Tts solution has the form
vg — _ﬂli“.i__ L + CL—'V/4VI.3(12, (2.2)
daind v :

where c is an arbitrary constant. With zero initial data L0=-vo =0 the constant ¢ equals zero, while the sub-
stitution of (2.2) into (1.5) and subsequent integration lead to the well-known solution

If the initial roughness is Ly# 0 while v, =0, then the problem_ is reduced to the equation

L ZVA ‘/ LO V/ﬂlgaz
T~ L-Lo()

l/4a3n +wv
We integrate it approximately, discarding the ser‘ond term inside the radical:
B e
VI VA VT (2.3)

- ]/4:121]0 v
We designate the solution with an initial perturbation of L, as L', and then the connection with the unper-

turbed solution L is established:

VLIL =1+ VLJ/L.
The mild "forgetting” of the initial data follows from this equation, Thus, a 1% roughness (Ly/L.=0.01) leads to
a 20% departure from the exact solution (L'/L =1.21).
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Fig. 1

We can qualitatively indicate the picture of the emergence into a self-similar mode in the general case
of nonzero initial data vy and Ly, From (1,5) and (2.1) we obtain the injtial value of the second derivative of the
function vL:

VI

dt?‘ t=g

4113&2141
Vi,
If vy=0 then d*VI/dt®> 0. Inthis case the emergence into a linear law in the variables VI and t oceurs
with a delay (Fig. 1, curve 1),

1) 9 I_72
= — (16nia® + i) 7 +

If v, # 0 then the case when d*VI/dt? <0 is possible, Then more rapid development initially occurs with
subsequent slowing and emergence into a linear law (Fig. 1, curve 2).

The dashed straight line in Fig. 1 corresponds to the approximate solution (2.3).

3, The 6-Function Form of Acceleration

This case models the passage of a stationary shock wave through a contact boundary. Let us study the
dependence on the initial data, We will consider the case when the boundary has a certain roughness L, before
the arrival of the shock wave. The action of the shock wave leads to the fact that the initial data for the turbu-
lent velocity become nonzero.,

Actually, by integrating the initial equation (1.2) over time and taking the upper integration limit to zero,
we obtain
vo = alyd,, (3.1}

where U, is the velocity of the boundary after the passage of the shock wave; A, is a constant, Then Eq. (1.2)
must be taken with a zero right side and with the initial data (3.1):
dv v 7 3.2
@t =0 (8.2)

i

The two equations (1.5) and (3.2) are reduced to one:

i 8} g
T T T v v
Its solution has the form
v sazﬂg/v
penf)

From the latter equation it follows that a nonzero solution is possible only for Ly# 0. The law of develop-
ment of the width of the mixing region is determined after integration of Eq. (1.5):

3 2
v . sa’ng
L=, (____" 8 Lt Lo) vy, (3.3)
. o 0
The exponent is always less than unity, Only a trivial solution is possible when Lj=0.

4, Comparison with the Results of Other Reports

Turbulent mixing of air with helium was studied in [1]. The gases were initial separated by a thin film
and then a stationary shock wave with a Mach number M=1,3 passed through the boundary, entered the helium,
was reflected from a rigid wall, and again arrived at the boundary., After reflection from it, and then from the
rigid wall again, the shock wave repeatedly retarded the contact boundary., Turbulent mixing of the interface
was observed experimentally.

We made a numerical calculation of this problem. We used the following system of equations:
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dp/dt + pdu/dx = 0 — the continuity equation; A (4.1)
duldt = -—-6p/p6x — the equation of motion; 4.2)
deldt = ~@jlpdz, j = —plvdc/dz — the equation for the concentration; 4.3
d d i 1 a(t/p .
76[ ._yt/_") N 5%, g=—plv (-(% +p <d$ )> — the energy equation; (4.4)
dop? 3 . P a® 4.5)
' -—Z‘; v—p—';— = plve?® -+ 6-7); (pl —JLI—), (4.5)

where o? = g(dplpdz + gla); g=—k8p/pax; a is the speed of sound; p=p;(1—c) +pyc; £=€;(1—c) +&,c; B =0.5,

This model of turbulent mixing differs from that of [2] by the introduction of Eq. (4.5) for the turbulent
velocity v. This change in the model permits the description of non-self-similar problems with sharply vary-
ing acceleration,

A comparison with the model of [1] shows that the models coincide in basic features., The differences
pertain to unimportant terms, as well as to the empirical constants chosen, This is unimportant for the results
of the present report.

Equations (4.1)-(4.5) were replaced by difference equations through the scheme suggested in [2]. The
method of calculating the width of the mixing region was taken from [2],

The problem under consideration proved to be very sensitive to the spatial grid. This is explained by the
method of calculating the width of the mixing region. Inthe method it is such that the initial width has a non~
zero value on the order of a grid intervdl, More precisely,

Ly = 5 (g +hy),

where hy and hy are the steps in space to the left and right of the interface.

With smoothly varying acceleration the initial width can be calculated from an analytical equation, as in
[2], but such a method is inadmissible in the present case. Therefore, the convergence was traced by sub-
dividing the grid intervals in the region of the boundary, It was found, as in the theoretical analysis in Sec. 3,
that with a small initial width L, there is little mixing,

The experimental results of [1] are shown by points in Fig, 2, In the experiment a perturbation region of
1y~ 5 mm was observed by the time of the first retardation, t =1000 psec. It follows from Eq. (3.3) that agree-
ment with the experiment can be achieved through the appropriate choice of @ and v with a fixed L,, Satis-
factory agreement with the experiment was obtained, for example, with @ =0,31 and »=1.25 (curve 2), as well
as with @ =0.25 and ¥=0,3 (curve 1), Curve 3 corresponds to the constants of curve 2 and L,=2.5 mm,

In the calculations of [1] the turbulent mixing was turned on at the moment of the first retardation,
The injtial width of the mixing region was nonzero and determined all the subsequent process,

Thus, the models of turbulent mixing in [1] and in the present report are such that the width of the
mixing region developing under the action of a series of stationary shock waves is fully determined by the
characteristic size of the initial perturbation,
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PRESSURE PULSATIONS IN A RECESS OVER WHICH A SUBSONIC
OR SUPERSONIC GAS STREAM FLOWS

A. N, Antonov, A. N. Vishnyakov, UDC 532.517,6:532,11:533.69
and S, P, Shalaev

Subsonic or supersonic flow over.a recess of small depth with laminar, transitional, and turbulent modes
of flow in the boundary layer ahead of the separation point are discussed, Under certain conditions (the Mach
number of the external stream, the size and shape of the recess, etc,) discrete components are observed in the
spectrum of pressure pulsations of the recess., This phenomenon has been investigated both experimertally
[1-4] and theoretically [5] with turbulent flow in the boundary layer ahead of the recess, In [1, 4] the nonsteady
flow pattern in the vicinity of a recess was revealed mainly using shadow photographs obtained with a short
exposure (~107% sec). The frequencies of the discrete components in the pressure spectrum of a three-dimen-
sional rectangular recess were determined in [3].

In the present report we investigate in detail the nonsteady flow pattern in a recess and its vicinity with
laminar, transitional, and turbulent modes of flow in the boundary layer ahead of the recess. H is shown that
with laminar flow in the boundary layer a nonsteady separation zone of small size, which periodically disap-
pears and reappears, forms ahead of the recess because of the pressure pulsations in it. The compression
shocks formed ahead of this zone of separation flow and the vortices formed in the zone are periodically car-
ried off by the stream after the next disappearance of this zone,

1. The experimental investigation was performed in wind tunnels and on an aeroballistic course, The
test models comprise two groups. The first group (D) includes cones with half-angles 8 =2,5-30° at the apex
and with axisymmetric annular recesses on the lateral surface with a depth h and a relative length ' =1/h, The
second group (I1) includes flat plates, which comprised a side wall of the working section of the wind tunnel with
a size of 70% 50 mm, Recesses with a depth h, a relative length /%, and a width of 70 mm were made in these
plates. A capacitive detector of pressure pulsations was mounted on the bottom of the recess flush with its
surface. The frequency characteristic curve of the detector has a maximum at the frequency f=6.5 kHz, which
corresponds to the natural frequency of the detector membrane, Therefore, all the measurements were made
at frequencies f <6 kHz. The parameters of the stream and the dimensions of the models used in the experi~
ments are given in Table 1, where My is the Mach number of the oncoming stream; Ty,/T, is the ratio of the
wall temperature to the stagnation temperature in the outer stream; ¢, and ¢, are the angles between the lead-
ing or trailing walls of the recess and its bottom; z’=z/h is the relative length of the deflector; d is the diameter
of the midsection of the model; Re is the Reynolds number, calculated from the parameters of the outer stream
and the length of the model from the critical point to the leading edge of the recess; A and B are the groups of
experiments conducted on the aeroballistic course and in wind tunnels, respectively. The parameters of the
stream on the aeroballistic course were determined from the average velocity over a base with a length of 8 m;
the error in measuring this velocity did not exceed 0.5%.
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