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M I X I N G  OF A C O N T A C T  B O U N D A R Y  R E T A R D E D  

BY S T A T I O N A R Y  S H O C K  WAVES 

V. E .  N e u v a z h a e v  and V. G. Y a k o v l e v  UDC 532.517.4 

The phenomenon of turbulent mixing of the interface between two gases of different densities retarded by 
plane stationary shock waves moving from the light gas into the heavy one was discovered experimentally in [1]. 

It is shown below that within the framework of the semiempirical  models of [1-3] this phenomenon is 
determined by the size of the initial perturbations - the roughness of the interface. If the characterist ic  size 
of these perturbations approaches zero, then the width of the mixing region also approaches zero. This 
phenomenon is explained by the 5-function character  of the acceleration. 

If the acceleration varies smoothly, such as constantly, then mixing will always develop, even with in- 
finitely small roughness. The analytical dependence of the width of the mixing region on the initial roughness 
is presented. 

The interface of the gases {liquids) is unstable against small perturbations if the acceleration is directed 
from the light to the heavy gas. This instability develops for sufficiently small coefficients of viscosity and 
surface tension. 

In the semiempirical  models of [1-3] it is assumed that turbulent mixing develops simultaneously with 
the action of the acceleration, although actually the presence of viscosity and surface tension leads to Che ap- 
pearance of a finite time interval during which a gradual transit ion to turbulent motion occurs.  

i 

The known sel f -s imi lar  solutions [3-5] were obtained under the assumption of smallness of the initial 
perturbations. Actually, these perturbations may not be small. The law according to which the emergence into 
a serf-s imilar  solution with constant acceleration occurs is established below. A mild "forgetting" of the initial 
i r regular i t ies  of the surface was unexpectedly discovered. 

1 .  A p p r o x i m a t e  M o d e l  

We will consider a diffusional model of turbulent mixing in the approximate formulation of [5]: The fluids 
are incompressible, while the turbulent velocity v is assumed to be a function of time only. Then the process 
of turbulent mixing will be described by two equations for two unknowns (the density p of the mixture and the 
character is t ic  turbulent velocity v), 

3p ~O~p. 
7 = lv --az~, (I.i) 

t d v  g v v 3 (1.2) 
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where  L is the effect ive width of the mixing region,  equal to the dis tance between the  points at which the 
d imens ion less  densi ty  5 = ( p - p 2 ) / ( p l - P 2 )  t akes  values of 0.1 and 0.9; Pl and P2 are the dens i t ies  of the light and 
heavy fluids, so that for  the densi ty  of the mixture  the re  is the equali ty p =p~ +p~; r is a second e m p i r i c a l  con- 
stant;  ~ is the  e x p r e s s i o n  ga lnp/3x averaged over  the mixing region; g is the acce lera t ion .  The concentra t ion 
of the light fluid is e x p r e s s e d  through the densi ty  p, 

. 

and t h e r e f o r e  it does not take par t  in the fu r the r  d iscuss ion .  

It is a s sumed  that  the c h a r a c t e r i s t i c  turbulent  length, appear ing in the coefficient  of diffusion, is con- 
nected with the mixing reg ion  by some constant  a ,  de te rmined  f r o m  exper iment :  

1 = a L .  

We will  a s sume  that  at the initial  t ime  the in ter face  is the point x = 0. Since p~ and p~, the initial dens i -  
t ies  of the heavy and light f luids,  a re  constants  while l and v are  functions of t ime  only, Eq. (1.1) is t r a n s -  
fo rmed  by a change of va r i ab l e s  to the equation of diffusion with a constant  coefficient  [5], 

OplO~ = O~plOx ~, (1.3) 

where  d r = I v d t .  The solution of Eq. (1.3) can be r e p r e s e n t e d  through the probabi l i ty  integral ,  while the follow- 
ing express ion  is valid for  the width L: 

L = 4~10~ 1/2, ~10 = 0.906. (1.4) 

E l imina t ing  T f r o m  (1.4), we obtain the equation 

d_L_L = 8~h~V. (1.5) 
dt 

2.  D e p e n d e n c e  o n  I n i t i a l  D a t a  w i t h  C o n s t a n t  A c c e l e r a t i o n  

Equations (1.2) and (1.5) with a r b i t r a r y  initial da ta  L 0 and v 0 are subject  to invest igat ion.  

F i r s t ,  let us be confined to the case  of v0=0. We conver t  Eq. (1.2) to the f o r m  

d v  'V V ~ 

d"T = czA1 - -  ~ " - C  ' 

where  A 1 is some constant  de te rmined  by the initial  data.  F r o m  (1.5) and (2.1) we get the equation 

dL 8~1~ ~2vL 

"~v ~= a 2 A 1 L _ v v  2 " 

I ts  solution has  the f o r m  

Al ~z: c L -V /  4,1~(J v 2 = - -  L + 

where  c is an a r b i t r a r y  constant .  With ze ro  initial  data  L0=v 0 =0 the constant e equals zero ,  while the sub- 
st i tution of (2.2) into (1.5) and subsequent  in tegra t ion lead to the well-known solution 

If the 

(2.1) 

(2.2) 

L = 16~104~4. A1 t ~. 
4n]~ ~ + 

initial roughness  is L 0 ~ 0 while v 0 = 0, then the p rob lem is reduced  to the equation 

dL 

+ 

We in tegra te  it approximate ly ,  d i sca rd ing  the second t e r m  inside the radical :  

We designate  the solution with an initial  per tu rba t ion  of L 0 as L ' ,  and then the connection with the unper -  
tu rbed  solution L is es tabl ished:  

V L ' / L  = i ~- I / L o / L .  

The mild nforgett ing" of the init ial  data  follows f r o m  this  equation. Thus,  a 1% roughness  (L0/L=0.01) leads to 
a 200/0 depa r tu re  f r o m  the exact  solution (L ' /L  =i .21) .  
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Fig. i 

We can qualitatively indicate the picture of the emergence  into a se l f - s imi l a r  mode in the general  case 
of nonzero initial data v 0 and L 0. F r o m  (1.5) and (2.1) we obtain the initial value of the second derivative of the 
function 

2 2  d~/Z (16q4o~z 2 . v 2 4%cz A 1 
d t2 t=o  - ~ ' r  

If v0 = 0 then d 2 ~ d t  2 > O. In this case the emergence  into a l inear law in the variables  vr~ and t occurs  
with a delay (Fig. 1, curve 1). 

If v 0 ~ 0 then the case when d 2 ~ d t  2 < 0 is possible. Then more rapid development initially occurs  with 
subsequent slowing and emergence  into a l inear law (Fig. 1, curve 2). 

The dashed s t ra ight  line in Fig,  1 corresponds  to the approximate solution (2.3). 

3 .  T h e  5 - F u n c t i o n  F o r m  o f  A c c e l e r a t i o n  

This case models the passage of a s ta t ionary shock wave through a contact boundary. Let us study the 
dependence on the initial data. We will consider  the case when the boundary has a cer ta in  roughness L 0 before 
the a r r iva l  of the shock wave. The action of the shock wave leads to the fact that the initial data for the turbu-  
lent velocity become nonzero.  

Actually, by integrating the initial equation (1.2) over  t ime and taking the upper integration limit to zero,  
we obtain 

Vo = ccUoA2, (3.i) 

where U 0 is the velocity of the boundary after the passage of the shock wave; A 2 is a constant.  Then Eq. (1.2) 
must  be taken with a zero  right side and with the initial data (3.1): 

dv ~ v2 (3.2) 
d-T +W-L-  = O. 

The two equations (1.5) and (3.2) are reduced to one: 

dL 8~2% ~ L 
d--~- = V v 

Its solution has the fo rm 

�9 % ,  s,z%~/v 

F r o m  the lat ter  equation it follows that a nonzero solution is possible only for L 0 e 0. The law of develop- 
ment of the width of the mixing region is determined after integration of Eq. (1.5): 

8~2rl2o 
v - 

vd + L, 

The exponent is always less than unity. Only a t r iv ia l  solution is possible when L o = 0. 

4.  C o m p a r i s o n  w i t h  t h e  R e s u l t s  o f  O t h e r  R e p o r t s  

Turbuletr~ mixing of air with helium was studied in [1]. The gases were initial separated by a thin film 
and then a s ta t ionary  shock wave with a Mach number M=1,3 passed through the boundary, entered the helium, 
was reflected f rom a rigid wall, and again arr ived at the boundary, After  ref lect ion f rom it, and then f rom the 
rigid wall again, the shock wave repeatedly re ta rded  the contact boundary. Turbulent mixing of the interface 
was observed experimental ly .  

We made a numerica l  calculation of this problem. We used the following sys tem of equations. 
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L, cm ~...j 

?0 f2 ~4 t ,  f0-2 ~ t~e 

Fig.  2 

dp/d t  @ pdu/Ox = 0 - -  the continuity equation; ' (4.1) 

du/dt  = - -Op ipax  - -  the equation of motion; (4.2) 

dc/dt = S- , ] /pOx,  ] = --plvOc/Ox - -  the equation for the concentration; (4.3) 

d~ , d (110) Oq ( O~ 0 ( l /O)~ _ 
d"i- + p - ' ~  0 . '  q = - -  ply ~'ff'fz + p ""~--x l the energy equation; (4.4) 

�9 d t  - -  = Ox }' 

where  r ~ = g(Op/pOx q- g/a2); g = - a p / p a x ;  a is the speed of sound; p = p l ( 1 - c ) + p 2 c ;  ~=~1(1-c )+~2c ; /3  =0.50 

This  model  of turbulent  mixing d i f fe rs  f r o m  that  of [2] by the introduction of Eq. (4.5) for  the turbulent  
veloci ty  v. This  change in the model  p e r m i t s  the desc r ip t ion  of n o n - s e l f - s i m i l a r  p rob lems  with sharp ly  v a r y -  
ing acce le ra t ion .  

A c o m p a r i s o n  with the model  of [1] shows that  the models  coincide in bas ic  f ea tu res .  The d i f fe rences  
per ta in  to unimportant  t e r m s ,  as wel l  as to the e m p i r i c a l  constants  chosen.  This  is unimportant  for  the r e su l t s  
of the p resen t  r e p o r t .  

Equat ions  (4.1)-(4.5) were  rep laced  by d i f fe rence  equations through the scheme  suggested in [2]. The 
method of ca lcula t ing the width of the mixing reg ion  was t aken  f r o m  [2]. 

The p rob lem under cons idera t ion  proved to be ve ry  sens i t ive  to the spa t ia l  grid.  This  is explained by the 
method of calcula t ing the width of the mixing region.  In the method it is such that  the init ial  width has  a non- 
ze ro  value on the o r d e r  of a grid interv~tl. More p rec i se ly ,  

l (h x + h~ ), L o = 

where  h 1 and h 2 a re  the s teps  in space  to the left  and r ight  of the in ter face .  

With smoothly  va ry ing  acce le ra t ion  the initial  width can be calculated f r o m  an analyt ical  equation, as in 
[2], but such a method is inadmiss ib le  in the p resen t  case .  T h e r e f o r e ,  the convergence  was t r a ced  by sub-  
dividing the grid in te rva ls  in the r eg ion  of the boundary.  It was  found, as in the theo re t i ca l  ana lys i s  in Sec. 3, 
that  with a s m a l l  init ial  width L 0 the re  is l i t t le  mixing.  

The expe r imen ta l  r e s u l t s  of [1] a re  shown by points in Fig .  2. In the exper imen t  a per tu rba t ion  region of 
L o ~ 5 m m  was obse rved  by the t ime  of the f i r s t  r e ta rda t ion ,  t =1000 psec .  It follows f r o m  Eq. (3.3) that  ag r ee -  
ment with the expe r imen t  can be achieved through the appropr ia te  choice of ~ and v with a fixed L 0. Sa t i s -  
f ac to ry  a g r e e m e n t  with the expe r imen t  was obtained, for  example ,  with c~ =0.31 and v=1.25  (curve 2), as well  
as with oz =0.25 and v=0 .3  (curve 1). Curve  3 c o r r e s p o n d s  to the constants  of curve  2 and l ,  2 =2.5 ram. 

In the calcula t ions  of [1] the turbulent  mixing was tu rned  on at the momen t  of the f i r s t  r e t a r d a t i o n .  
The initial  width of the mixing reg ion  was nonzero and de te rmined  all the subsequent  p roces s .  

Thus,  the models  of turbulent  mixing in [1] and in the p r e s e n t  r e p o r t  a r e  such that  the width of the 
mixing reg ion  developing under the action of a s e r i e s  of s t a t ionary  shock waves  is fully de te rmined  by the 
c h a r a c t e r i s t i c  s ize  of the init ial  per turbat ion .  
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P R E S S U R E  P U L S A T I O N S  IN A R E C E S S  O V E R  

OR S U P E R S O N I C  GAS S T R E A M  F L O W S  

A.  N.  A n t o n o v ,  A.  N.  V i s h n y a k o v ,  
a n d  S.  P .  S h a l a e v  

W H I C H  A S U B S O N I C  

UDC 532.517.6.532.11:533.69 

Subsonic or  suPersonic  flow o v e r . a  r e c e s s  of sma l l  depth with l aminar ,  t rans i t iona l ,  and turbulent  modes 
of flow in the boundary l aye r  ahead of the separa t ion  point are  d iscussed .  Under ce r t a in  conditions {the Much 
number  of the ex te rna l  s t r e a m ,  the s ize  and shape of the r e c e s s ,  etc.) d i s c r e t e  components  a re  obse rved  in the 
s p e c t r u m  of p r e s s u r e  pulsat ions of the r e c e s s .  This  phenomenon has been invest igated both exper imenta l ly  
[1-4] and theore t i ca l ly  [5] with turbulent  flow in the boundary layer  ahead of the r e c e s s .  In [1, 4] the nonsteady 
flow pa t te rn  in the vicini ty of a r e c e s s  was revea led  mainly using shadow photographs obtained with a shor t  
e x p o s u r e  (~ 10 -6 sec).  The f requenc ies  of the d i s c r e t e  components  in the p r e s s u r e  s p e c t r u m  of a t h r e e - d i m e n -  
s ional  r ec t angu la r  r e c e s s  were  de te rmined  in [3]. 

In the presen t  r epo r t  we invest igate  in deta i l  the nonsteady flow pa t te rn  in a r e c e s s  and its vicinity with 
l amina r ,  t r ans i t iona l ,  and turbulent  modes  of flow in the boundary l ayer  ahead of the r e c e s s .  It is shown that  
with l amina r  :[low in the boundary l ayer  a nonsteady separa t ion  zone of sma l l  s ize ,  which per iodica l ly  d i sap-  
pea r s  and r e a p p e a r s ,  f o r m s  ahead of the r e c e s s  because  of the p r e s s u r e  pulsat ions in it. The c o m p r e s s i o n  
shocks fo rmed  ahead of this  zone of sepa ra t ion  flow and the vor t i ces  fo rmed  in the zone are  per iodical ly  c a r -  
r ied off by the s t r e a m  af te r  the next d i sappea rance  of this zone. 

1. The expe r imen ta l  invest igat ion was pe r fo rmed  in wind tunnels and on an aeroba l l i s t i c  course .  The 
tes t  models  c o m p r i s e  two groups .  The f i r s t  group (13 includes cones with ha l f -angles  0 =2.5-30 ~ at the apex 
and with a x i s y m m e t r i c  annular  r e c e s s e s  on the l a t e r a l  su r face  with a depth h and a re la t ive  length l ~ =I/h. The 
second group (II) includes f lat  plates ,  which compr i sed  a side wall  of the working sect ion of the wind tunnel with 
a s ize  of 70x 50 mm.  R e c e s s e s  with a depth h, a re la t ive  length l ~ and a width of 70 m m  were  made in these  
pla tes .  A capac i t ive  de tec to r  of p r e s s u r e  pulsat ions was mounted on the bot tom of the r e c e s s  flush with its 
su r face .  The f requency c h a r a c t e r i s t i c  curve  of the de tec to r  has  a max imum at the f requency f=6 .5  kHz, which 
co r r e sponds  to the natural  f requency  of the de tec to r  m e m b r a n e .  T h e r e f o r e ,  all  the m e a s u r e m e n t s  were  made 
at f requenc ies  f < 6  kHz. The p a r a m e t e r s  of the s t r e a m  and the d imensions  of the models  used in the ex p e r i -  
ments  a re  given in Table  1, where  Mo is the Much number  of the oncoming s t r eam;  Tw/T 0 is the ra t io  of the 
wal l  t e m p e r a t u r e  to the s tagnat ion t e m p e r a t u r e  in the outer  s t r eam;  ~l  and c~ 2 a re  the angles between the lead-  
ing or  t r a i l i ng  wal ls  of the r e c e s s  and its bottom; z ~ =z/h  is the re la t ive  length of the def lector ;  d is the d i ame te r  
of the midsec t ion  of the model;  Re is the Reynolds number,  calculated f r o m  the p a r a m e t e r s  of the outer  s t r e a m  
and the length of the model  f r o m  the c r i t i ca l  point to the leading edge of the r e ce s s ;  A and B are  the groups of 
expe r imen t s  conducted on the ae roba l l i s t i c  cou r se  and in wind tunnels,  r e spec t ive ly .  The p a r a m e t e r s  of the 
s t r e a m  on the ae roba l l i s t i c  course  were  de te rmined  f r o m  the average  veloci ty over  a base  with a length of 8 m; 
the e r r o r  in m e a s u r i n g  this veloci ty  did not exceed 0.5%. 
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